Basics
Hyperparameter
Tuning
Learning Rate
Number of Layers
Number of Neurons per Layer
Batch Size
Epoch
Neural Network
Libraries and
Frameworks
TensorFlow
PyTorch
Keras
Caffe
MXNet
Theano
Emerging Trends
Continual Learning
Meta-Learning
Capsule Networks
Graph Neural Networks
Neuroevolution
Fundamentals of
Neural Networks
Inputs
Weighted Sum
Activation Function
Output
Sigmoid
ReLU (Rectified Linear Unit)
Tanh
Leaky ReLU
Softmax
Weights (W)
Biases (b)
Input Layer
Hidden Layers
Output Layer
Error Calculation
Gradient Computation
Weight and Bias Update
Iterative Process